\square

NARSIMHA REDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)
 MODEL QUESTION PAPER

II B.Tech II Semester (NR21) Regular Examination, February 2023
Digital Electronics
(Electrical and Electronics Engineering)
Time: 3 hours
Maximum marks: 70
Note: - This question paper contains two parts A and B

- Part A is compulsory which carries 20 marks (10 sub questions are two from each unit carry 2 Marks). Answer all questions in Part A
- Part B Consists of 5 Units. Answer any one full question from each unit. Each question carries 10 Marks and may have a, b sub questions

Part-A
Answer all questions

Part-B
(50 Marks)
Answer any five questions All Questions carry equal Marks

Q.No		Question	M	CO	BL	PO
UNIT-I						
2)	a.	Construct a table for 4-3-2-1 weighted code and write 9154 using this code.	5	1	4	3
	b.	Explain what do you mean by error detecting and correcting codes?	5	1	2	1
OR						

3)	a.	Compare \& contrast the features of TTL \& CMOS logic families.	5	1	4	2
	b.	Draw the schematic and explain the operation of a CMOS inverter. Also explain its characteristics.	5	1	1	3
UNIT-II						
4)	a.	Design a 4-bit binary to BCD converter.	5	2	1	3
	b.	Design a full adder using two half adders.	5	2	1	3
OR						
5)	a.	Simplify the following Boolean functions, using a four variable Karnaugh map method and implement the simplified function using NAND gates. $F(A, B, C, D)=$ ᄃ0,2,4,5,6,7,8,10,13,15)	5	2	3	2
	b.	Design the block diagram of a 4:1 multiplexer using 2:1 multiplexer.	5	2	1	2
UNIT-III						
6)	a.	Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers.	5	3	2	1
	b.	Design 4-bit shift register using D flip-flops	5	3	2	3
On OR						
7)	a.	Design a MOD-5 synchronous counter using flip flops and implement it? Also draw the timing diagram.	5	3	2	2
	b.	Design Johnson counter and state its advantages and disadvantages.	5	3	2	2
UNIT-IV						
8)	a.	Explain the working of R-2R ladder DAC with neat circuit diagram and mention it's limitations.	5	4	2	1
	b.	What is the major disadvantage of the digital ramp type ADC?	5	4	1	1
9)	a.	Design a 3-bit paraller-comparator A/D converter for 2's complement format.	5	4	2	2
	b.	Describe the operation of a DAC.	5	4	4	1
10)	a.	Give the classification of semiconductor memories	5	5	1	1
	b.	Write short note on RAM, types of ROMs	5	5	1	2
11)	a.	Implement the following function using $\operatorname{PLAF}=\Sigma(0,1,2,4)$ and F2 $=\Sigma(0,5,6,7)$.	5	5	2	3
	b.	Implement the following Boolean function using $3 \times 4 \times 2$ PLA, $\mathrm{F} 1(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,3,5)$ and $\mathrm{F} 2(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(3,5,7)$	5	5	2	3

M - Marks CO - Course Outcomes PO - Program Outcomes

BL - Bloom's Taxonomy Levels (L1-Remembering, L2-Understanding, L3-Applying, L4-Analyzing, L5-Evaluating, L6-Creating)

